Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
International Journal of Advanced Computer Science and Applications ; 13(1):775-781, 2022.
Article in English | Scopus | ID: covidwho-1687571

ABSTRACT

Virtual Private Networks (VPNs) have now taken an important place in computer and communication networks. A virtual private network is the extension of a private network that encompasses links through shared or public networks, such as the Internet. A VPN is a transmission network service for businesses with two or more remote locations. It offers a range of access speeds and options depending on the needs of each site. This service supports voice, data and video and is fully managed by the service provider, including routing equipment installed at the customer’s premises. According to its characteristics, VPN has widely deployed on ”COVID-19” offering extensive services to connect roaming employees to their corporate networks and have access to all the company information and applications. Hence, VPN focuses on two important issues such as security and Quality-of-Service. This latter has a direct relationship with network performance such as delay, bandwidth, throughput, and jitter. Traditionally, Internet Service Providers (ISPs) accommodate static point-to-point resource demand, named, Layer 1 VPN (L1VPN). The primary disadvantage of L1VPN is that the data plane connectivity does not guarantee control plane connectivity. Layer 2 VPN is designed to provide end-to-end layer 2 connection by transporting layer 2 frames between distributed sites. An L2VPN is suitable for supporting heterogeneous higher-level protocols. In this paper we propose an enhanced routing protocol based on Traffic Split Routing (TSR) and Shortest Path Routing (SPR) algorithms. Simulation results show that our proposed scheme outperforms the Shortest Path Routing (SPR) in term of network resources. Indeed, 72% of network links are used by the Enhanced Traffic Split Routing compared to Shortest Path Routing (SPR) which only used 44% of the network links © 2022,International Journal of Advanced Computer Science and Applications.All Rights Reserved

2.
Computers, Materials and Continua ; 71(2):3839-3851, 2022.
Article in English | Scopus | ID: covidwho-1573854

ABSTRACT

The success of Internet of Things (IoT) deployment has emerged important smart applications. These applications are running independently on different platforms, almost everywhere in the world. Internet of Medical Things (IoMT), also referred as the healthcare Internet of Things, is the most widely deployed application against COVID-19 and offering extensive healthcare services that are connected to the healthcare information technologies systems. Indeed, with the impact of the COVID-19 pandemic, a large number of interconnected devices designed to create smart networks. These networks monitor patients from remote locations as well as tracking medication orders. However, IoT may be jeopardized by attacks such as TCP SYN flooding and sinkhole attacks. In this paper, we address the issue of detecting Denial of Service attacks performed by TCP SYN flooding attacker nodes. For this purpose, we develop a new algorithm for Intrusion Detection System (IDS) to detect malicious activities in the Internet ofMedical Things. The proposed scheme minimizes as possible the number of attacks to ensure data security, and preserve confidentiality of gathered data. In order to check the viability of our approach, we evaluate analytically and via simulations the performance of our proposed solution under different probability of attacks. © 2022 Tech Science Press. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL